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In the case of two-lane traffic, vehicle drivers always worry about the lane changing actions from neighbor
lane. This paper studies the stability of a car-following model on two lanes which incorporates the lateral
effects in traffic. The stability condition of the model is obtained by using the linear stability theory. The
modified Korteweg–de Vries equation is constructed and solved, and three types of traffic flows in the
headway-sensitivity space—stable, metastable, and unstable—are classified. Both analytical and simulation
results show that the anxiousness about lane changing from neighbor lane indeed has influence upon people’s
driving behavior and the consideration of lateral effects could stabilize the traffic flows on both lanes.
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I. INTRODUCTION

An increasing number of traffic models have been devel-
oped and empirically tested �see the review paper by
Chowdhury et al. �1��. In 1995, Bando et al. �2� proposed an
optimal velocity �OV� model for characterizing the car-
following behavior, and then extended it with the consider-
ation of explicit delay time �3�. Davis �4� found that keeping
safe platoons only requires short delay times which are re-
markably smaller than the typical reaction times of driving.
Recently, Lubashevsky et al. �5� further extended the work
�3� through introducing the deficiencies of human decision
making in driving. The OV model can be used to analyze
various traffic density waves when combined with perturba-
tion method. Using this model, Komatsu and Sasa �6� de-
rived the modified Korteweg–de Vries �MKDV� equation
and described traffic jam as a kink density wave. Nagatani et
al. �7� took the effect of acceleration delay into account in
the OV model and obtained Korteweg–de Vries �KDV� equa-
tion from the nonlinear analysis near the critical point. Mu-
ramatsu and Nagatani �8� showed that the solitonary density
wave appears near the neutral stability line only. Nagatani �9�
also extended the OV model by considering the vehicle in-
teraction with the next car ahead �i.e., the next-nearest-
neighbor interaction� and showed that the triangular shock
wave, soliton wave and kink wave appear in three regions
�i.e., stable, metastable, and unstable� given by the solutions
of Burgers equation, KDV equation, and MKDV equation,
respectively.

In 1998, Helbing and Tilch �10� carried out a calibration
of the OV model using the empirical follow-the-leader
data and found that an extremely short relaxation time could
result in a very high value of acceleration that led to an
overshooting of the vehicle velocity. They then developed a
generalized force �GF� model. The GF model can overcome
some deficiencies of the OV model, but both these two
models can not capture such behavior that the following
vehicle may not decelerate if the preceding vehicle travel

faster than itself although the distance between them is
shorter than the safe distance for an instant �11�. Luba-
shevsky et al. �12� reported that Helly �13� did a similar
approximation in the year as early as 1959. Later, Treiber et
al. �14,15� developed an intelligent driver model that forms a
collision-free description of car one-lane ensembles. On the
other hand, Jiang et al. �16,17� proposed a full velocity dif-
ference model which considers more aspects in car-following
process than the OV and GF models and theoretically is
more realistic.

Recently, Xue et al. �18–20� presented a simplified OV
model for investigating the effects of the relative velocity.
They derived the MKDV equation for describing the traffic
jam in unstable region, obtained the phase diagram ��x ,��
��x is the headway and � the sensitivity coefficient� under
various values of the response factor to relative velocity, and
divided the traffic flow into stable, metastable and unstable
regions �18,20�. Xue �21� proposed a lattice model of opti-
mized traffic flow with the consideration of optimal current
with the next-nearest-neighbor interaction. Lenz et al. �22�
constructed a model that a driver looks at many vehicles
ahead of him/her. Hasebe et al. �23,24� presented an ex-
tended OV model applied to a cooperative driving control
system. They found that there exist a certain set of
parameters that make traffic flow “most stable” in their “for-
ward looking” OV model. Ge et al. �25� showed that a drive
does not necessarily consider the effects from an arbitrary
number of vehicles ahead of him/her but that from the
three vehicles ahead of him/her. But the dynamic behaviors
near the critical points of the model parameters have not
been investigated in these studies. Orosz et al. �26� investi-
gated the local and global bifurcations of OV model with
driver reaction time and numerically found several regions of
multistability.

The list of contributions associated with the OV model is
still becoming larger. However, all existing models are only
subject to singe lane traffic. In this paper, we first present an
extended car-following model on two lanes by incorporating
the lateral effects in traffic. We then derive the models’ sta-
bility condition by using the linear stability theory. Three
types of traffic flows, namely, stable, metastable, and un-*Email address: hjhuang@mail.nsfc.gov.cn
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stable ones, are classified by analyzing the neutral stability
curves and the coexisting curves given by the solution of the
MKDV equation. Numerical simulation is carried out to vali-
date the analytic results. We find that our model is superior in
stability to other models due to the consideration of lateral
effects. This implies that the lateral effects could make traffic
flow more stable.

II. MODEL

The dynamic equation of the car-following model on
single-lane highway takes in general the following form �1�:

xn� = fsti�vn,�xn,�vn� , �1�

where the function fsti represents the response received by
the nth vehicle to stimulus. Equation �1� defines the accel-
eration or deceleration of the nth vehicle, which is deter-
mined by the surrounding traffic conditions. The stimulus is
composed of the velocity vn, the velocity difference �vn
=vn+1−vn, and the headway �xn=xn+1−xn between succes-
sive vehicles. A representative dynamic equation of car-
following models is as follows �16–20�:

dxn�t + ��
dt

= V„�xn�t�,�vn�t�… , �2�

where xn�t� is the position of the nth vehicle at time t,
V(�xn�t� ,�vn�t�) is the optimal velocity formulated as a
function of the headway and relative velocity, and � denotes
the delay time with which the vehicle velocity reaches the
optimal velocity as the traffic flow is varying.

In the case of two-lane traffic, besides the effects in front,
the lateral effects should also be taken into account. This is
because our survey made in Beijing shows that the driving
behavior of a vehicle on a lane is somewhat influenced
by the traffic flow on neighbor lane. Few drivers suddenly
change lanes without any alert message to neighbor lane
cars, with the result that most drivers have to be ready to
take precautions against the nearest vehicle on neighbor
lane in front of him/her lane at any moment �although the
lane changing actions do not occur�. This may be unique
in comparison with other countries since the driving
behavior has not been regulated perfectly yet in the rapidly
developing China. Hence, Eq. �1� should be adjusted as
follows:

xl,nl
� = fsti

l �vl,nl
,�xl,nl

,�l,nl
,�vl,nl

� , �3�

where l represent the lane number �l=1,2�, �l,nl
is the dis-

tance between the nlth vehicle on lane l and the nearest ve-
hicle on neighbor lane in front of this vehicle. Note that the
lateral velocity difference is not considered in this paper.
Then, the car-following model Eq. �2� becomes

dxl,nl
�t + �l�

dt
= Vl„�xl,nl

�t�,�l,nl
�t�,�vl,nl

�t�… . �4�

Expanding the left hand side of Eq. �4� in Taylor series with
small parameter �l and omitting the high order terms, we
have dxl,nl

�t+�l� /dt=dxl,nl
�t� /dt+�ld

2xl,nl
�t� /dt2. Let the op-

timal velocity be a linear combination of the headway-
expressed velocity and the current velocity difference, i.e.,
Vl(�xl,nl

�t� ,�l�t� ,�vl,nl
�t�)=Vl(�xl,nl

�t� ,�l,nl
�t�)+�l�vl,nl

�t�,
where the response factor to relative velocity, �l �0��l

�1�, is a constant independent of time, velocity and posi-
tion, and �1��2 holds since the physical condition for driv-
ing on lane 1 is assumed to be better than lane 2 in our study.
Therefore, Eq. �4� can be rewritten as

d2xl,nl
�t�

dt2 = �l�Vl„�xl,nl
�t�,�l,nl

�t�… −
dxl,nl

dt
� + �l�vl,nl

�t� ,

�5�

where �l=1/�l represents the sensitivity coefficient of a
driver on lane l to the difference between the optimal and the
current velocities, and �l=�l /�l is the sensitivity coefficient
of response to the stimulus �vl,nl

�t�.
Up to now, we have motivated a time continuous car-

following model for highway with two lanes. To perform the
model’s stability analyses, we have to further discretize it.
By using the asymmetric forward difference, we rewrite Eq.
�5� as follows:

xl,nl
�t + 2�l� = xl,nl

�t + �l� + �lVl„�xl,nl
�t�,�l,nl

�t�…

+ �l�l��xl,nl
�t + �l� − �xl,nl

�t�� . �6�

Define a weighted headway �x̄l,nl
=�1�xl,nl

+�2�l,nl
, where

�1 and �2 are the weights of axial headway �xl,nl
and lateral

distance �l,nl
, respectively, �1+�2=1. The headway-

expressed optimal velocity in Eq. �6� is selected similar to
that used by Bando et al. �2�,

Vl„�xl,nl
�t�,�l,nl

…

= Vl��x̄l,nl
� = 0.5vmax

l �tanh��x̄l,nl
− hlc� + tanh�hlc�� ,

�7�

where hlc is a comprehensive safety parameter reflecting both
the axial and lateral effects. This parameter should be larger
than the safety distance without lateral effects considered. In
our simulation, set vmax

1 =2.5 m/s, vmax
2 =2 m/s, h1c=4.5 m

and h2c=4 m. The optimal velocity Eq. �7� is a monotoni-
cally increasing function of the weighted distance and is
bounded by the maximal velocity vmax

l . It is clear that when
the weighted headway is less than the comprehensive safety
parameter, the vehicle velocity is reduced to prevent crashing
into the preceding vehicles on both lanes; if it is larger than
the parameter, the vehicle velocity increases to the maximum
velocity.

The headway-expressed optimal velocity Eq. �7� has a
turning point at �x̄l,nl

=hlc, where

Vl���x̄l,nl
� = � d2Vl��x̄l,nl

�

d�x̄l,nl

2 �
�x̄l,nl

=hlc

= 0. �8�

As explained in Ge et al. �25�, the reason of choosing the
form of Bando et al. �2� for optimal velocity lies in the
existence of the above turning point, which is important for
us to derive the MKDV equation from Eq. �6�.
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III. LINEAR STABILITY ANALYSIS

The method of linear stability analysis similar to Ge et al.
�25� is applied to the above model. Because there is no real
lane changing in our modeling and we only assume there are
different numbers of vehicles on both lanes, so the steady
state solutions exist for both lanes and their stability analyses
can be carried out separately. However, there is a coupling
between lane 1 and 2 in examining the lateral effect, we
hence adopt the mean-field approach to treat the car en-
semble on one lane in some averaged way when the dynam-
ics of cars on the other lane is analyzed. Now, we first con-
sider the stability of a uniform traffic flow on each lane. The
uniform traffic flow is defined by such a state that all ve-
hicles on lane l �l=1,2� move with the optimal velocity
Vl�hl ,�l� and the identical headway hl and the lateral dis-
tance �l, while the relative velocity �vl,nl

is set to be zero.
Clearly, we have

xl,nl,0
�t� = hlnl + Vl�hl,�l�t with hl = D/Nl

and �l = D/�N1 + N2� , �9�

where Nl is the total number of vehicles on lane l, D is the
road length, and xl,nl,0

�t� is the position of the nlth vehicle in
steady state.

Let yl,nl
�t� be a small deviation from the steady-state so-

lution xl,nl,0
�t�, i.e.,

xl,nl
�t� = xl,nl,0

�t� + yl,nl
�t� . �10�

Substituting Eq. �10� into Eq. �6� and linearizing the result-
ing equation yield

yl,nl
�t + 2�l� = yl,nl

�t + �l� + �lVl��hl���1„yl,nl+1�t� − yl,nl
�t�…

+ �2„�l,nl+1�t� − ��l,nl
�t�…�

+ �l�l��yl,nl
�t + �l� − �yl,nl

� , �11�

where Vl��hl�=dVl��x̄l� /d�x̄l at �x̄l=hl, and ��l,nl
�t�

=�l,nl+1�t�−�l,nl
�t�. For a very small perturbation yl,nl

�t� at
xl,nl,0

�t�, we can let ��l,nl
�t��0.5��yl,nl+2�t�−�yl,nl+1�t��. Ex-

panding yl,nl
in the Fourier-modes, i.e., yl,nl

�t�=Al exp�iklnl

+zlt�, we obtain

�ezl�l − 1��ezl�l − �l�le
ikl + �l�l�

= �lVl��hl���1�eikl − 1� + 0.5�2�e2ikl − eikl�� . �12�

Expanding zl, i.e., zl=z1l�ikl�+z2l�ikl�2+, and inserting it into
the above equation, we obtain the first- and second-order
terms of coefficients in the expression of zl, as follows:

z1l = Vl��hl�

and z2l = −
3Vl��hl��l

2
+

Vl��hl�
2

��1 + 1.5�2� + �lVl��hl� ,

�13�

where l=1,2.
Thus the neutral stability condition is given by

�l =
�1 + 1.5�2 + 2�l

3Vl��hl�
. �14�

For small disturbances with long wavelengths, the uniform
traffic flow is unstable in the condition that

�l �
�1 + 1.5�2 + 2�l

3Vl��hl�
. �15�

The neutral stability curves in the parameter space
��xl ,�l� are shown in Fig. 1, where the sensitivity �l=1/�l.
Obviously, there exist the critical points �hlc ,�lc� for the neu-
tral stability subject to different sets of ��1 ,�2 ,�1� for lane 1
and ��1 ,�2 ,�2� for lane 2. The apex of each curve indicates
the critical point. On each lane, the uniform state irrespective

FIG. 1. Phase diagram in the headway-sensitivity space for lane
1 �a� and lane 2 �b�. The solid lines represent neutral stability curves
and the dotted lines coexisting curves. �vmax

1 =2.5 m/s,
vmax

2 =2 m/s, h1c=4.5 m, and h2c=4 m�. For each set of ��1 ,�2 ,�1�
on lane 1 or ��1 ,�2 ,�2� on lane 2, the space is divided into three
regions by solid line and dotted line: stable region above the dotted
line, metastable region between the solid line and the dotted line,
and unstable region below solid line.
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of weighted headway is always linearly stable for �l��lc,
while uniform states in a neighborhood hlc are unstable for
�l	�lc. The traffic flow is stable above the neutral stability
curve and a traffic jam will not appear. While below the
curve, traffic flow is unstable and the density waves emerge.
From Fig. 1 it can be seen that with taking into account the
lateral effects ��2�0�, the critical points and the neutral sta-
bility curves are lowered, which means the stability of the
uniform traffic flow on each lane has been strengthened. The
traffic jam is thus suppressed efficiently. Ge et al. �25� re-
ported that in the case of single lane traffic, the traffic flow
stability can be improved by considering more vehicles
ahead in the car-following model; we here obtain the same
result on flow stability improvement but by incorporating
lateral effects in traffic modeling.

IV. NONLINEAR ANALYSIS

We now consider the slowly varying behaviors for long
waves in the stable and unstable regions. Introduce slow
scales for space variable nl and time variable t �25�, and
define the slow variables Xl and T as follows:

Xl = 
�nl + blt� and T = 
3t, 0 	 
 � 1, l = 1,2,

�16�

where bl is a constant to be determined. Let

�xl,nl
�t� = hlc + 
Rl�Xl,T� . �17�

Rewriting Eq. �6� in terms of the headways, yields

�xl,nl
�t + 2�l� = �xl,nl

�t + �l� + �l�Vl��xl,nl+1,�l,nl+1�

− Vl��xl,nl
,�l,nl

�� + �l�l��xl,nl+1�t + �l�

− �xl,nl+1�t� − �xl,nl
�t + �l� + �xl,nl

�t�� ,

�18�

where Vl��xl,nl
,�l,nl

�=Vl��x̄l,nl
�, �x̄l,nl

=�1�xl,nl
+�2�l,nl

.
Substituting Eqs. �16� and �17� into Eq. �18� and making the
Taylor expressions to the fifth order of 
, we obtain the fol-
lowing nonlinear partial differential equation


2�bl − Vl���Xl
Rl + 
3	3

2
bl

2�l −
Vl�

2
��1 + 1.5�2� − �lbl
�Xl

2 Rl

+ 
4��TRl + 	7bl
3�l

2

6
−

Vl�

6
��1 + 2.5�2�

−
3�l�1 + bl�l�bl

6

�Xl

3 Rl −
Vl�

6
�Xl

Rl
3�

+ 
5�3bl�l�T�Xl
Rl + 	5

8
bl

4�l
3 −

Vl�

24
��1 + 7.5�2�
�Xl

4 R

+
Vl�

12
��1 + 1.5�2��Xl

2 Rl
3�

+ �l

5	�Xl

�TRl +
4bl

3�l
2 + 6bl

2�l + 4bl

24
�Xl

4 Rl

+
�lVl�

6
�Xl

2 Rl
3
 = 0, �19�

where Vl�=dVl��x̄l,nl
� / d�x̄l,nl

�x̄l,nl
=hlc

and Vl�

=d3Vl��x̄l,nl
� / d3�x̄l,nl

�x̄l,nl
=hlc

. Near the critical point

�hlc ,�lc�, taking �l= �1+
2��lc, bl=Vl� and �lc= ��1+1.5�2

+2�l� /3Vl�, then Eq. �19� can be simplified as

�TRl + 	7 − 8�l + 10�l
2 − 9�1 − 22.5�2

54

Vl��Xl

3 Rl −
Vl�

6
�Xl

Rl
3

+ 
	�Al0

2
�Vl��Xl

2 Rl + Bl0Vl��Xl

4 Rl +
Al0

12
Vl��Xl

2 Rl
3
 = 0.

�20�

where Al0=�1+1.5�2+2�l and Bl0= �5Al0
3 −9��1+7.5�2�

+4�lAl0
2 +18�lAl0+36�l� /216. We make the following trans-

formations for Eq. �20�:

T� = −
7 − 8�l + 10�l

2 − 9�1 − 22.5�2

54
T ,

�21�

Rl = 	7 − 8�l + 10�l
2 − 9�1 − 22.5�2

9Vl�
Vl�
1/2

Rl�.

Thus, we obtain the regularized equation

�T�Rl� − �Xl

3 Rl� + �Xl
Rl�

3

+ 
�27

2
C1

l �Xl

2 Rl� −
1

2
C2

l �Xl

4 Rl� +
1

2
C3

l �Xl

2 Rl�
3� = 0,

�22�

where C1
l =−2Al0 /Dl0, C2

l =−�5Al0
3 −9��1+7.5�2�+4�lAl0

2

+18�lAl0+36�l� /2Dl0, C3
l =Al0, Di0=7−8�l+10�l

2−9�1

−22.5�2�0, 0��l�1, l=1,2.
Equation �22� is the modified KDV equation with an o�
�

correction term. We first ignore the o�
� term and get the
KDV equation with the kink-antikink soliton solution

Rl,0� �Xl,T�� = �cl tanh�cl

2
�Xl − clT��, l = 1,2, �23�

where cl is the propagation velocity of the kink-antikink soli-
ton solution. In order to determine the selected value of
propagation velocity cl for the solution �23�, the following
solvability condition must be satisfied:

�Rl,0� ,M�Rl,0� �� = �
−�

+�

dXl Rl,0� �Xl,T��M�Rl,0� �Xl,T��� = 0,

�24�

where M�Rl,0� �=13.5C1
l �Xl

2 Rl,0� +0.5C2
l �Xl

4 Rl,0� −0.5C3
l �Xl

2 Rl,0�
3.

By performing the integration, we obtain the selected veloc-
ity cl

cl =
135C1

l

2C2
l + 3C3

l , l = 1,2. �25�

Hence, we obtain the kink-antikink soliton solution of the
KDV equation �23�, i.e.,
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Rl�Xl,T� = 	 �7 − 8�l + 10�l
2 − 9�1 − 22.5�2�
9Vl�

Vl�cl
1/2

 tanh�cl

2
�Xl +

7 − 8�l + 10�l
2 − 9�1 − 22.5�2

54
Vl�clT�, l = 1,2.

�26�

If the optimal velocity function takes the form of Eq. �7�,
then V1�=1, V1�=−2, V2�=5/4, V2�=−5/2. The amplitude Ai
of the kink solution is given by

Al = 	−
7 − 8�l + 10�l

2 − 9�1 − 22.5�2

18
cl��lc

�l
− 1�
1/2

,

�27�

where �lc=�lc=3Vl� / ��1+1.5�2+2�l�. The kink solution
represents the coexisting phase which consists of the freely
moving phase with low density and the jammed phase with
high density. The headways of freely moving phase and
jammed phase are given by �xl=hlc−Al and �xl=hlc+Al,
respectively. According to these, we can depict all coexisting
curves in the ��xl ,�l� plane, as shown by dotted lines in
Fig. 1.

In Fig. 1, for each set of ��1 ,�2 ,�1� on lane 1 or
��1 ,�2 ,�2� on lane 2, the traffic flow is divided into three
regions by the solid line �representing the neutral stability
curve� and the dotted line �representing the coexisting
curve�: the first is the stable region above the coexisting
curve, the second is the metastable region between the neu-
tral stability curve and the coexisting curve, and the third is
the unstable region below the neutral stability curve. We can
see that both the stability and coexisting curves decrease
with the increasing values of �2 and �l, l=1,2. Hence, the
stability region is enlarged, and the metastable, and unstable
regions are reduced.

V. SIMULATION RESULTS

In the Xue’s single lane model �21�, it was shown that the
triangular shock wave, soliton wave and kink wave appear in
three regions—stable, metastable and unstable regions, re-
spectively. In our two-lane model incorporating the lateral
effects in traffic, these three waves appear too, respectively
described by the solutions of the Bergers’ equation, KDV
equation and MKDV equation constructed in the three re-
gions, respectively. In this section, we numerically describe
the kink-antikink density wave as a traffic jam in the un-
stable region and discuss the space-time evolution of the
headways on lane 1 and lane 2 with respect to different sets
of ��1 ,�2 ,�l�. The simulation is based on Eq. �18� for head-
ways. Suppose that there Nl vehicles distributed on lane l
under a periodic boundary condition. The initial headways
for both lanes are given below: �x1,n1

�t�t=0,1=5.0 for n1

�0.5N1 and n1�0.5N1+1, �x1,n1
�t�t=0,1=5.0−0.1 for n1

=0.5N1, �x1,n1
�t�t=0,1=5.0+0.1 for n1=0.5N1+1;

�x2,n2
�t�t=0,1=4.0 for n2�0.5N2 and n2�0.5N2+1,

�x2,n2
�t�t=0,1=4.0−0.1 for n2=0.5N2, �x2,n2

�t�t=0,1=4.0

+0.1 for n2=0.5N2+1. The total number of vehicles is
N1=160 for lane 1 and N2=200 for lane 2. The safety dis-
tance is h1c=4.5 m for lane 1 and h1c=4.0 m for lane 2. The
initial values of the lateral distances �1,n1

and �2,n2
can be

calculated according to the initial positions of all vehicles on
both lanes. Other input parameters for the simulation are
vmax

1 =2.5 m/s, vmax
2 =2 m/s, �1=2.5, and �2=2.

Figure 2 shows the space-time evolution of the headways
on lane 1 and lane 2 for different sets of ��1 ,�2 ,�1 ,�2�.
In patterns �a�, �b�, and �c�, the traffic flow is unstable
because the instability condition �16� is satisfied. When
small disturbances are added to the uniform traffic flows
on both lanes in �a�, �b�, and �c�, they are amplified with
time and the uniform flows on both lanes change finally to
inhomogeneous traffic flows; the traffic jam in �a� is more
serious than that in �b�, that in �b� more serious than that in
�c�; the disturbances in �d� disappear and the traffic flows
on both lanes become uniform over the whole space.
The patterns �b� and �c� show that only considering relative
velocity or only considering lateral effects is not enough to
eliminate disturbances. Patterns �a� and �b� verify that in the
unstable region, the kink-antikink soliton solution indeed ap-
pears as traffic jams. In addition, in �a�, �b�, and �c�, the
density waves propagate backwards.

FIG. 2. Space-time evolution of the headways on lane 1 and
lane 2 after t=10 000 s. The patterns �a�,�b�,�c� are for the coexist-
ing phases, and �d� for the freely moving phase. �The numbers 0,
50, 100, and 150 on time axis represent 10 000, 10 050, 10 100, and
10 150, respectively.�
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Figure 3 shows the headway profiles at sufficiently
large time t=10 120 s. With the same sensitivity parameters
��1=2.5, �2=2�, as the relative velocity and further the lat-
eral effects are considered, the amplitude of the density wave
decreases. In pattern �d� the density waves disappear and the
traffic flows on both lanes are uniform over the whole space.
All the above results show that the consideration of lateral
effects could stabilize traffic flow. The simulation outcomes
are in agreement with analytical results.

VI. SUMMARY

We have extended the OV car-following model of single
lane to the case with two lanes through taking into account
the lateral effects. The traffic nature has been analytically
analyzed by using the linear and nonlinear analyses. It
has been shown that there exists critical point in the extended

model and the neutral stability line is obtained. Obviously,
the consideration of lateral effects could stabilize the traffic
flows on both lanes. The MKDV equation has been derived
to describe the traffic behavior near the critical point.
We gave simulation results to show the analytical analyses
clearly. The simulation outcomes about the space-time
evolution of the headways on both lanes are in good agree-
ment with analytical results. The lane changing actions do
not truly occur and are not explicitly formulated in the pro-
posed model but only worried about by drivers. Even though,
our study shows that this anxiousness indeed has influence
upon people’s driving behavior and could stabilize traffic
flow.
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